Exercises 2.4 (page 72): Problems:

3. Find all the subsequential limits of the following sequences.
 b. \(\{ \cos \frac{4k\pi}{2} \} \), \(\{ \cos \frac{(4k+1)\pi}{2} \} = \{0\} \), and \(\{ \cos \frac{(4k+2)\pi}{2} \} = \{-1\} \). Thus the set of subsequential limits is \(\{0, 1, -1\} \).
 f. \(\{ (1.5 + (-1)^n)^n \} \).
 \(\{(1.5 + (-1)^{2k-1})^{2k-1}\} = (\frac{3}{2})^{2k-1} \) cgs to 0
 and \(\{(1.5 + (-1)^{2k})^{2k}\} = (2.5)^{2k} \) dgs to \(\infty \). Thus the set of subsequential limits is \(\{0, \infty\} \).

7. Determine the limit points and the isolated points of each of the following sets.
 c. \((0, 1) \cup \{2\} \)
 The set of limit points is \([0, 1]\) and 2 is the only isolated point of \((0, 1) \cup \{2\}\).
 e. \(\mathbb{R} \setminus \mathbb{Q} \)
 Let \(p \in \mathbb{R} \). Show that \(p \) is a limit point of \(\mathbb{R} \setminus \mathbb{Q} \).
 Let \(\epsilon > 0 \). Then since \(p < p + \epsilon, 3\epsilon \in \mathbb{R} \setminus \mathbb{Q} \) such that \(p < r < p + \epsilon \). Thus \(N_r(p) = (p - \epsilon, p + \epsilon) \) contains a point of \(\mathbb{R} \setminus \mathbb{Q} \) other than \(p \). \(\implies p \) is a limit point of \(\mathbb{R} \setminus \mathbb{Q} \). Hence the set of limit points of \(\mathbb{R} \setminus \mathbb{Q} \) is \(\mathbb{R} \). Thus \(\mathbb{R} \setminus \mathbb{Q} \) has no isolated points.

Exercises 2.6 (page 85): Problems:

1. If \(\{a_n\} \) and \(\{b_n\} \) are Cauchy sequences in \(\mathbb{R} \), prove (without using Theorem 2.6.4) that \(\{a_n + b_n\} \) and \(\{a_nb_n\} \) are Cauchy.

 Let \(\epsilon > 0 \). Find \(n_0 \in \mathbb{N} \) such that if \(m, n \geq n_0 \) then \(|a_n + b_n - (a_m + b_m)| < \epsilon\).

 \(\{a_n\} \) is Cauchy \(\implies \forall n_1 \in \mathbb{N} \) such that \(|a_n - a_m| < \frac{\epsilon}{2} \forall m, n \geq n_1 \) and \(\{b_n\} \) is Cauchy \(\implies \exists n_2 \in \mathbb{N} \) such that \(|b_n - b_m| < \frac{\epsilon}{2} \forall m, n \geq n_2 \). Choose \(n_0 = \max\{n_1, n_2\} \). If \(m, n \geq n_0 \) then \(|a_n + b_n - (a_m + b_m)| = |a_n - a_m + b_n - b_m| \leq |a_n - a_m| + |b_n - b_m| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon\).

 Next, \(\{a_nb_n\} \) is Cauchy.

 Let \(\epsilon > 0 \). Find \(n_0 \in \mathbb{N} \) such that if \(m, n \geq n_0 \) then \(|a_nb_n - (a_m b_m)| < \epsilon\).

 \(\{a_n\} \) and \(\{b_n\} \) are Cauchy sequences \(\implies \) both are bounded \(\implies \exists M_1 > 0 \) and \(M_2 > 0 \) such that \(|a_n| < M_2 \forall n \in \mathbb{N} \) and \(|b_n| < M_1 \forall n \in \mathbb{N} \). Also \(\{a_n\} \) is Cauchy \(\implies \exists n_1 \in \mathbb{N} \) such that \(|a_n - a_m| < \frac{\epsilon}{2M_1} \forall m, n \geq n_1 \) and \(\{b_n\} \) is Cauchy \(\implies \exists n_2 \in \mathbb{N} \) such that \(|b_n - b_m| < \frac{\epsilon}{2M_2} \forall m, n \geq n_2 \). Choose \(n_0 = \max\{n_1, n_2\} \). If \(m, n \geq n_0 \) then \(|a_nb_n - (a_m b_m)| = |(a_n b_n) - (a_m b_m) + (a_m b_n) - (a_m b_m)| = |a_n(b_n - b_m) + b_n(a_m - a_n)| \leq |a_n||b_n - b_m| + |b_n||a_m - a_n| < M_2(\frac{\epsilon}{2M_1}) + M_1(\frac{\epsilon}{2M_2}) = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon\).

2. Use only the definition to show that the following sequences are or are not Cauchy.
 a. \(\{\frac{2^n - 1}{2^n}\} \)
 We prove that \(\{\frac{2^n - 1}{2^n}\} \) is Cauchy.
 Let \(\epsilon > 0 \). Find \(n_0 \in \mathbb{N} \) such that if \(m, n \geq n_0 \) then \(|\frac{2^n - 1}{2^n} - \frac{2^m - 1}{2^m}| < \epsilon\). Now \(|\frac{2^n - 1}{2^n} - \frac{2^m - 1}{2^m}| = \frac{2^n - 2^m}{2^n 2^m} = \frac{2^n - 2^m}{2^{n+m}} = \frac{1}{2^m} < \frac{\epsilon}{2^n}\)
Use the definition to prove that the sequence \(\left\{ \frac{2^m(2^n-1)-2^n(2^m-1)}{2^{m+n}} \right\} \) converges, where \(m, n \geq 0 \).

\[
\frac{|2^m(2^n-1)-2^n(2^m-1)|}{2^{m+n}} = \frac{|2^m-2^n|}{2^{m+n}} \quad (\text{assume } m > n < \frac{2^m}{2^n}).
\]

\[
\frac{1}{n} < \epsilon \iff n > \frac{1}{\epsilon}. \quad \text{Choose } n_0 > \frac{1}{\epsilon}. \quad \text{Then if } m > n \geq n_0 \text{ then } \left| \frac{2^m-2^n}{2^{m+n}} \right| < \frac{1}{n} < \frac{1}{\epsilon} = \epsilon.
\]

(b) \(\left\{ \frac{2n^2+1}{n^2} \right\} \)
We prove that \(\left\{ \frac{2n^2+1}{n^2} \right\} \) is Cauchy.

Let \(\epsilon > 0 \). Find \(n_0 \in \mathbb{N} \) such that if \(m, n \geq n_0 \) then \(\left| \frac{2n^2+1}{n^2} - \frac{2m^2+1}{m^2} \right| < \epsilon \). Now \(\left| \frac{2n^2+1}{n^2} - \frac{2m^2+1}{m^2} \right| = \frac{m^2-n^2}{m^2+n^2} \) (assume \(m > n \)).

\[
\frac{1}{n} < \epsilon \iff n > \frac{1}{\epsilon}. \quad \text{Choose } n_0 > \frac{1}{\epsilon}. \quad \text{Then if } m > n \geq n_0 \text{ then } \left| \frac{2n^2+1}{n^2} - \frac{2m^2+1}{m^2} \right| < \frac{1}{n} < \frac{1}{\epsilon} = \epsilon.
\]

3. Use the definition to prove that the sequence \(\left\{ \frac{1}{n^2} \right\} \) is Cauchy.
Let \(\epsilon > 0 \). Find \(n_0 \in \mathbb{N} \) such that if \(m, n \geq n_0 \) then \(\left| \frac{1}{n^2} - \frac{1}{m^2} \right| < \epsilon \). Now \(\left| \frac{1}{n^2} - \frac{1}{m^2} \right| = \frac{m^2-n^2}{m^2+n^2} \) (assume \(m > n \)).

\[
\frac{1}{n} < \epsilon \iff n > \frac{1}{\epsilon}. \quad \text{Choose } n_0 > \frac{1}{\epsilon}. \quad \text{Then if } m > n \geq n_0 \text{ then } \left| \frac{1}{m^2} - \frac{1}{n^2} \right| < \frac{1}{n} < \frac{1}{\epsilon} = \epsilon.
\]

4. Use the definition to prove that the sequence \(\left\{ (-1)^n \right\} \) is not a Cauchy sequence.
Prove: \(\exists \epsilon > 0 \), \(\forall n_0 \in \mathbb{N} \), \(\exists m \geq n_0 \) and \(\exists n \geq n_0 \) such that \(\left| (-1)^m - (-1)^n \right| \geq \epsilon \).

Let \(n_0 \in \mathbb{N} \). Choose \(\epsilon = 2 \). Then \(n = n_0 \geq n_0 \) and \(m = n_0 + 1 \geq n_0 \), and \(\left| (-1)^m - (-1)^n \right| = \left| (-1)^{n_0} - (-1)^{n_0+1} \right| = 2 \geq \epsilon \).

5. Use the definition to prove that the sequence \(\left\{ n \right\} \) is not a Cauchy sequence.
Prove: \(\exists \epsilon > 0 \), \(\forall n_0 \in \mathbb{N} \), \(\exists m \geq n_0 \) and \(\exists n \geq n_0 \) such that \(|m - n| \geq \epsilon \).

Let \(n_0 \in \mathbb{N} \). Choose \(\epsilon = 1 \). Then \(n = n_0 \geq n_0 \) and \(m = n_0 + 1 \geq n_0 \), and \(|m - n| = |n_0 - (n_0 + 1)| = 1 \geq \epsilon \).

6. If \(\left\{ a_n \right\} \) has two subsequences that converge to different limits, then prove that \(\left\{ a_n \right\} \) diverges.

Theorem: If \(\left\{ a_n \right\} \) converges, then every subsequence of \(\left\{ a_n \right\} \) converges to \(\lim_{n \to \infty} a_n \).

An equivalent statement is:
If every subsequence of \(\left\{ a_n \right\} \) does not converge to \(\lim_{n \to \infty} a_n \), then \(\left\{ a_n \right\} \) diverges.

Now \(\left\{ a_n \right\} \) has two subsequences that converge to different limits \(\implies \) every subsequence of \(\left\{ a_n \right\} \) does converge to \(\lim_{n \to \infty} a_n \). Hence, by the Theorem above, the sequence \(\left\{ a_n \right\} \) diverges.

7. Let \(A \) be a nonempty subset of \(\mathbb{R} \) that is bounded below and let \(\beta = \inf A \). If \(\beta \notin A \), prove that \(\beta \) is a limit point of \(A \).

Let \(\epsilon > 0 \). We will show that \(N_{\epsilon}(\beta) \cap A \setminus \left\{ \beta \right\} \neq \emptyset \); that is, \(N_{\epsilon}(\beta) \cap A \neq \emptyset \) (since \(\beta \notin A \implies A \setminus \left\{ \beta \right\} = A \)). Then, since \(\beta < \beta + \epsilon, \beta + \epsilon \) is not a lower bound of \(A \) (since \(\beta = \inf A \)). \(\implies \exists a \in A \) such that \(\beta < a < \beta + \epsilon \). Thus \(\beta + \epsilon \) is an upper bound of \(A \). Hence, \(\beta \) is a limit point of \(A \).