1. For each of the following sequences, prove, using an \(\epsilon - n_0 \) argument that the sequence converges to the given limit \(a \); that is, given \(\epsilon > 0 \), determine \(n_0 \) such that \(|a_n - a| < \epsilon \ \forall n \geq n_0 \).

(a) \(\left\{ \frac{6n-2}{5n-7} \right\} \), \(a = \frac{6}{5} \).

(b) \(\left\{ \frac{8n}{7n+3} \right\} \), \(a = 0 \).

(c) \(\left\{ \frac{\sin n}{n} \right\} \), \(a = 0 \).

(d) \(\left\{ \frac{2n+5}{6n-3} \right\} \), \(a = \frac{1}{3} \).

(e) \(\left\{ 1 - \frac{(-1)^n}{n} \right\} \), \(a = 1 \).

(f) \(\left\{ \frac{(-1)^n}{n+1} \right\} \), \(a = 0 \).

(g) \(\left\{ n\sqrt{1 + \frac{1}{n} - 1} \right\} \), \(a = \frac{1}{2} \).

2. Theorem 2.1.10: (a) If a sequence \(\{a_n\} \) converges then its limit is unique.
(b) If a sequence \(\{a_n\} \) converges then \(\{a_n\} \) is bounded.

3. Theorem 2.2.1 If \(\{a_n\} \) and \(\{b_n\} \) are convergent with \(\lim_{n \to \infty} a_n = a \) and \(\lim_{n \to \infty} b_n = b \), then
(a) \(\lim_{n \to \infty} (a_n + b_n) = a + b \)
(b) \(\lim_{n \to \infty} (a_nb_n) = ab \)
(c) Furthermore, if \(a \neq 0 \) and \(a_n \neq 0 \ \forall n \in \mathbb{N} \), then \(\lim_{n \to \infty} \frac{b_n}{a_n} = \frac{b}{a} \)

4. Corollary 2.2.2: If \(\{a_n\} \) is convergent with \(\lim_{n \to \infty} a_n = a \) and \(c \in \mathbb{R} \), then
(a) \(\lim_{n \to \infty} (a_n + c) = a + c \)
(b) \(\lim_{n \to \infty} (a_nc) = ac \)

5. Theorem 2.2.3: Let \(\{a_n\} \) and \(\{b_n\} \) be sequences of real numbers. If \(\{b_n\} \) is bounded and \(\lim_{n \to \infty} a_n = 0 \), then \(\lim_{n \to \infty} a_nb_n = 0 \).

6. Theorem 2.2.4: Suppose \(\{a_n\}, \{b_n\}, \) and \(\{c_n\} \) are sequences for which \(\exists n_0 \in \mathbb{N} \) such that \(a_n \leq b_n \leq c_n \ \forall n \geq n_0 \). If \(\{a_n\} \) and \(\{c_n\} \) converge to \(L \), then \(\{b_n\} \) converges to \(L \).

7. Let \(\{a_n\} \) be a sequence in \(\mathbb{R} \) with \(\lim_{n \to \infty} a_n = a \). Prove that \(\lim_{n \to \infty} (a_n)^2 = a^2 \)

8. Let \(\{a_n\} \) be a sequence in \(\mathbb{R} \) with \(\lim_{n \to \infty} a_n = a \). Prove that \(\lim_{n \to \infty} (a_n)^3 = a^3 \).

9. If \(\{a_n\} \) converges to \(a \), then \(\{|a_n|\} \) converges to \(|a|\). The converse is false.

10. Let \(\{a_n\} \) and \(\{b_n\} \) be sequences of real numbers.
(a) If \(\{a_n\} \) and \(\{a_n + b_n\} \) both converge, prove that the sequence \(\{b_n\} \) converges.
(b) Suppose \(b_n \neq 0 \ \forall n \in \mathbb{N} \). If \(\{b_n\} \) and \(\left\{ \frac{a_n}{b_n} \right\} \) both converge, prove that the sequence \(\{a_n\} \) also converges.