Do the following.

SECTION 7.1 EXERCISES (page 495) Problems 2 and 3

SECTION 7.2 EXERCISES (page 509) Problems 4 and 5

1. Let \(T \in \mathcal{L}(V) \). A nonzero vector \(x \) in \(V \) is a generalized eigenvector of \(T \) corresponding to the eigenvalue \(\lambda \) if \((T - \lambda I)^p(x) = 0\) for some positive integer \(p \).
 Note: if \(p \) is the smallest positive integer such that \((T - \lambda I)^p(x) = 0\), then \((T - \lambda I)^{p-1}(x)\) is an eigenvector of \(T \).

2. Let \(T \in \mathcal{L}(V) \) and let \(x \) in \(V \) be a generalized eigenvector of \(T \) corresponding to the eigenvalue \(\lambda \).
 If \(p \) is the smallest positive integer such that \((T - \lambda I)^p(x) = 0\), then the ordered set \(\{ (T - \lambda I)^{p-1}(x), (T - \lambda I)^{p-2}(x), \ldots, (T - \lambda I)(x), x \} \)
 is called a cycle of generalized eigenvectors of \(T \) corresponding to the eigenvalue \(\lambda \). The length of the cycle, \(\{ (T - \lambda I)^{p-1}(x), (T - \lambda I)^{p-2}(x), \ldots, (T - \lambda I)(x), x \} \), is \(p \).
 Note:
 (1) the initial vector of a cycle of generalized eigenvectors of a linear operator \(T \) is the only eigenvector of \(T \) in the cycle.
 (2) If \(x \) is an eigenvector of \(T \) corresponding to the eigenvalue \(\lambda \) then the set \(\{ x \} \) is a cycle of generalized eigenvectors of \(T \), corresponding to the eigenvalue \(\lambda \), of length 1.

3. The generalized eigenspace of \(T \) corresponding to the eigenvalue \(\lambda \) of \(T \), denoted by \(K_\lambda \), is the set \(\{ x \in V | (T - \lambda I)^p \text{ for some positive integer } p \} \).
 Note \(E_\lambda \subseteq K_\lambda \).

4. If \(\lambda \) is an eigenvalue of \(T \) with multiplicity \(m \), then
 (a) \(\dim(K_\lambda) = m \).
 (b) \(K_\lambda = N((T - \lambda I)^m) \).

5. (DOT Diagram) Let \(r_j \) denote the number of dots in the \(j \)th row of the dot diagram of \(T_i \), the restriction of \(T \) to \(K_\lambda \). Then
 (a) \(r_1 = \dim(V) - \text{rank}(T - \lambda I) \)
 (b) \(r_j = \text{rank}((T - \lambda I)^{j-1}) - \text{rank}((T - \lambda I)^j) \) \((j > 1) \).

6. INTERPRETATION of a DOT diagram:
 The block corresponding to the dot diagram \(\bullet \bullet \bullet \bullet \) consists of a cycle of length 3 (\# of dots in column 1), a cycle of length 2 (\# of dots in column 2), and a cycle of length 1 (\# of dots in column 1).

1. For each of the following matrices \(A \), find a Jordan canonical form \(J \) and an invertible matrix \(Q \) such that \(J = Q^{-1}AQ \).
 \((a) \ A = \begin{bmatrix} 3 & 1 & -2 \\ -1 & 0 & 5 \\ -1 & -1 & 4 \end{bmatrix} \; |A - \lambda I| = \begin{vmatrix} 3 - \lambda & 1 & -2 \\ -1 & 0 - \lambda & 5 \\ -1 & -1 & 4 - \lambda \end{vmatrix} = -(\lambda - 3)(\lambda - 2)^2 = 0. \)
 So \(\lambda = 2 \) and its multiplicity is 2 and \(\lambda = 3 \).
 \(E_3; \)
 \(A - 3I = \begin{bmatrix} 0 & 1 & -2 \\ -1 & -3 & 5 \\ -1 & -1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix} \).
A basis for E_3 is $\{(-1, 2, 1)\}$.

b_{2}:

$$A - 2I = \begin{bmatrix} 1 & 1 & -2 \\ -1 & -2 & 5 \\ 2 & 2 & -2 - \lambda \end{bmatrix} = \begin{bmatrix} 3 - 0 & 2 & -3 \\ 0 & 1 - 0 & 0 \\ -1 & -1 & 2 \end{bmatrix} \xrightarrow{RREF} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \end{bmatrix}.$$

A basis for E_2 is $\{(1, -3, -1)\}$.

Now $\dim(K_2) = 2 = \text{multiplicity of } 2 \text{ in } |A - 2I|$.

$$(A - 2I)^2 = \begin{bmatrix} 2 & 1 & -1 \\ -4 & -2 & 2 \\ -2 & -1 & 1 \end{bmatrix} \xrightarrow{RREF} \begin{bmatrix} 1 \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}. $$

Thus, a basis for $(A - 2I)^2$ is $\{(-1, 2, 0), (1, 0, 2)\}$.

A basis for the generalized eigenspace for K_2 is either a union of two 1-cycles or a 2-cycle. However, it cannot be two 1-cycles because each cycle contains one eigenvector but a basis for E_2 contains one eigenvector, since $\dim(E_2) = 1$. Therefore, a basis for the generalized eigenspace for K_2 is a 2-cycle. This is confirmed by the following dot diagram:

$$r_2 = 4 - \text{rank}(A - 2I) = 3 - 2 = 1$$

In order to form a basis (2-cycle) for K_2, we now look for a nonzero generalized eigenvector x such that $(A - 2I)(x) \neq 0$ but $(A - 2I)^2(x) \neq 0$. From the basis $\{(-1, 2, 0), (1, 0, 2)\}$ of $(A - 2I)^2$ given above, we choose $x = (-1, 2, 0)$ (although both of these work) and note that $$\begin{bmatrix} 1 & 1 & -2 \\ -1 & -2 & 5 \\ -1 & -1 & -2 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} -3 \\ -3 \\ -1 \end{bmatrix}.$$ So, the required 2-cycle is $\{(1, -3, -1), (-1, 2, 0)\}$.

The required Jordan canonical basis is $\beta' = \{(-1, 2, 1), (1, -3, -1), (-1, 2, 0)\}$. Hence, $Q = \begin{bmatrix} -1 & 1 & -1 \\ 2 & -3 & 2 \\ 1 & 2 & 0 \end{bmatrix}$ and $J = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$.

Check: $Q^{-1} = \begin{bmatrix} -2 & -1 & 1 \\ -2 & -1 & 0 \\ -1 & 0 & -1 \end{bmatrix}$ and $Q^{-1}AQ = J$.

(b) $A = \begin{bmatrix} -1 & -1 & 0 \\ 0 & -1 & -2 \\ 0 & 0 & -1 \end{bmatrix}$.

$$|A - \lambda I| = \begin{vmatrix} -1 - \lambda & -1 & 0 \\ 0 & -1 - \lambda & -2 \\ 0 & 0 & -1 - \lambda \end{vmatrix} = -(1 + \lambda)^3 = 0.$$

So $\lambda = -1$ and its multiplicity is 3.

E_{-1}:

$$A + I = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -2 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{RREF} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}. $$

A basis for E_{-1} is $\{(1, 0, 0)\}$.

Now $\dim(K_{-1}) = 3 = \text{multiplicity of -1 in } A + I$.

$$(A + I)^2 = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{RREF} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}. $$

Thus, a basis for $(A + I)^2$ is $\{1, x\}$. A basis for the generalized eigenspace for K_{-1} is either a union of three 1-cycles, or a union of a 1-cycle and a 2-cycle, or a 3-cycle. However, it cannot be a union of three 1-cycles or a union of a 1-cycle and a 2-cycle because each of these cases requires two eigenvectors but a basis for E_{-1} contains one eigenvector, since $\dim(E_{-1}) = 1$. Therefore, a basis for the generalized eigenspace for K_{-1} is a 3-cycle. This is confirmed by the following dot diagram:
Note \((A + I)^3 = 1\) and \((A + I)^2 = 2\). In order to form a basis \((3\text{-cycle})\) for \(K_3\), we now look for a nonzero generalized eigenvector \(v\) such that \((A + I)^2(v) \neq 0\) and \((A + I)^3(v) = 0\).

\[(A + I)^2v = \begin{bmatrix}
0 & 0 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} = \begin{bmatrix}
2 \\
0 \\
0
\end{bmatrix} \quad \text{and} \quad (A + I)v = \begin{bmatrix}
0 & -1 & 0 \\
0 & 0 & -2 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
-2
\end{bmatrix}.

So, the required 3-cycle is \(\{2, -2x, x^2\}\). The required Jordan canonical basis is \(\beta' = \{(2, 0, 0), (0, -2, 0), (0, 0, 1)\}\). Hence, \(Q = \begin{bmatrix}
2 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 1
\end{bmatrix}\) and \(J = \begin{bmatrix}
-1 & 0 & 0 \\
0 & -1 & 1 \\
0 & 0 & -1
\end{bmatrix}\).

Check: \(Q^{-1} = \begin{bmatrix}
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & -1
\end{bmatrix}\) and \(Q^{-1}AQ = J\).

\[(a) \quad A^2 = \begin{bmatrix}
2 & -4 & 2 \\
-2 & 0 & 1 \\
-2 & -6 & 3
\end{bmatrix}
\quad \text{and} \quad |A^2 - 2I| = \begin{vmatrix}
2 - \lambda & -4 & 2 \\
-2 & -\lambda & 1 \\
-2 & -6 & 3 - \lambda
\end{vmatrix} = (\lambda - 2)^2(\lambda - 4)^2 = 0.
\]

So \(\lambda = 2, -4\) and its multiplicity is 2, \(\lambda = 4\) and its multiplicity is 2.

For \(E_2\):

\[A - 2I = \begin{bmatrix}
0 & -4 & 2 \\
-2 & -4 & 1 \\
-2 & -6 & 3
\end{bmatrix} RREF \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & -\frac{1}{2} \\
0 & 0 & 0
\end{bmatrix}.
\]

A basis for \(E_2\) is \(\{(0, 1, 2, 0), (2, 1, 0, 2)\}\).

For \(E_4\):

\[A - 4I = \begin{bmatrix}
-2 & -4 & 2 \\
-2 & -4 & 1 \\
-2 & -6 & 3
\end{bmatrix}
\quad \text{and} \quad \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}.
\]

A basis for \(E_4\) is \(\{(0, 1, 1, 1)\}\).

Now \(\dim(K_4) = 2\) with multiplicity 4 in \(|A - 4I|\).

\[(A - 4I)^2 = \begin{bmatrix}
4 & 8 & -4 & -4 \\
4 & 4 & 0 & -4 \\
4 & 0 & 4 & -4 \\
4 & 8 & -4 & -4
\end{bmatrix} RREF \begin{bmatrix}
1 & 0 & 1 & -1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}.
\]

Thus, a basis for \((A - 4I)^2\) is \(\{(-1, 1, 1, 0), (1, 0, 0, 1)\}\).

A basis for the generalized eigenspace for \(K_4\) is either a union of two 1-cycles or a 2-cycle. However, it cannot be two 1-cycles because each cycle contains one eigenvector but a basis for \(E_4\) contains one eigenvector, since \(\dim(E_2) = 1\). Therefore, a basis for the generalized eigenspace for \(K_4\) is a 2-cycle. This is confirmed by the following dot diagram:

\[r_1 = 4 - \text{rank}(A - 4I) = 4 - 3 = 1\] and \(r_2 = \text{rank}(A - 4I) - \text{rank}((A - 4I)^2) = 3 - 2 = 1\). In order to form a basis (2-cycle) for \(K_4\), we now look for a nonzero generalized eigenvector \(x\) such that \((A - 4I)(x) \neq 0\) but \((A - 2I)^2(x) \neq 0\). From the basis \(\{(-1, 1, 1, 0), (1, 0, 0, 1)\}\) of \((A - 4I)^2\) given above, we choose \(x = (-1, 1, 1, 0)\) (although both of these work) and note that \(A - 4I = \ldots \)
The required Jordan canonical basis is \(\beta' = \{(0, -1, -1, -1), (0, 1, 1, 0)\} \). Hence, \(Q = \begin{bmatrix} 0 & 2 & 0 & -1 \\ 1 & 1 & -1 & 1 \\ 2 & 0 & -1 & 1 \\ 0 & 2 & -1 & 0 \end{bmatrix} \) and \(\lambda = 2 \) and its multiplicity is 2.

\(E_3: \) (d) \(A = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 1 & -1 & 3 \end{bmatrix} \). \(|A - \lambda I| = (\lambda - 2)^2(\lambda - 3)^2 = 0. \)

So \(\lambda = 2 \) and its multiplicity is 2, \(\lambda = 3 \) and its multiplicity is 2.

\(A - 3I = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \end{bmatrix} \) with \(\text{RREF} = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \).

A basis for \(E_3 \) is \(\{(1, 1, 1, 0), (0, 0, 0, 1)\} \).

\(E_2: \)

\(A - 2I = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & -1 & 1 \end{bmatrix} \) with \(\text{RREF} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \).

A basis for \(E_2 \) is \(\{(1, 0, 0, 0)\} \).

Now \(\dim(K_2) = 2 = \text{multiplicity of 2 in } |A - 2I|. \)

\((A - 2I)^2 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & -1 & 1 \end{bmatrix} \), \(\text{RREF} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \).

Thus, a basis for \((A - 2I)^2 \) is \(\{(0, 0, 1, -1)\} \).

A basis for the generalized eigenspace for \(K_2 \) is either a union of two 1-cycles or a 2-cycle. However, it cannot be two 1-cycles because each cycle contains one eigenvector but a basis for \(E_2 \) contains one eigenvector, since \(\dim(E_2) = 1 \). Therefore, a basis for the generalized eigenspace for \(K_2 \) is a 2-cycle. This is confirmed by the following dot diagram:

\(r_1 = 4 - \text{rank}(A - 2I) = 4 - 3 = 1 \) and \(r_2 = \text{rank}(A - 2I) - \text{rank}((A - 2I)^2) = 3 - 2 = 1 \). In order to form a basis (2-cycle) for \(K_4 \), we now look for a nonzero generalized eigenvector \(x \) such that \((A - 2I)(x) \neq 0 \) but \((A - 2I)^2(x) \neq 0 \). From the basis \(\{(0, 1, 0, -1)\} \) of \((A - 2I)^2 \) given above, we let \(x = (0, 1, 0, -1) \) and note that \(A - 2I = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & -1 & 1 \end{bmatrix} \) with \(\text{RREF} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \).

So, the required 2-cycle is \(\{(0, 1, 0, 0), (0, 1, 0, -1)\} \). The required Jordan canonical basis is \(\beta' = \{(1, 1, 1, 0), (0, 0, 0, 1), (1, 0, 0, 0), (0, 1, 0, -1)\} \). Hence, \(Q = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \) and

\(J = \begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{bmatrix} \).