Hi everyone. Please work as efficiently as possible. I'm going to go get a fax from my future self.

1. Number 2: There are 7 nonidentity elements of order 2. Each of these elements, along with the identity of the group, form a subgroup of order 2, and each of these subgroups are distinct.

2. Number 5: We prove that \(\mathbb{Z} \oplus \mathbb{Z} \) is not cyclic, which shows that \((\text{cyclic}) \oplus (\text{cyclic})\) need not be cyclic. Suppose that \(\mathbb{Z} \oplus \mathbb{Z} = \langle (a, b) \rangle \). Then \((0, b) \in \langle (a, b) \rangle \), and so there exists a \(k \) so that \((0, b) = k(a, b) = (ka, kb)\), and so \(0 = ka \) and \(b = kb \). If \(b \neq 0 \), then \(k = 1 \). And if \(k = 1 \), then \(a = 0 \). So in either case, either \(a \) or \(b \) is zero. If \(a = 0 \), then the element \((1, 0) \notin \langle (0, b) \rangle \), and a similar contradiction holds if \(b = 0 \). Thus \(\mathbb{Z} \oplus \mathbb{Z} \) is not cyclic.

3. Number 12: Suppose that \(R \) is the cyclic subgroup generated by the rotations in \(D_n \), and that \(F \) is any subgroup of order 2. Since \(R \) is cyclic, it is abelian, and since the order of \(F \) is prime, then \(F \) must be cyclic, and hence abelian. Then \(R \oplus F \) is abelian, and thus it must not be isomorphic to the nonabelian group \(D_n \).
4. Number 46: We map \(\varphi(ax^2 + bx + c) = (a, b, c) \). This is clearly well defined, and we check that it is an isomorphism. First, we observe

\[
\varphi((ax^2 + bx + c) + (dx^2 + ex + f)) = \varphi((a + d)x^2 + (b + e)x + (c + f)) = (a + d, b + e, c + f) = (a, b, c) + (d, e, f) = \varphi(ax^2 + bx + c) + \varphi(dx^2 + ex + f).
\]

So \(\varphi \) is a homomorphism. We can see that \((a, b, c) = \varphi(ax^2 + bx + c) \) for any \((a, b, c) \in \mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3\), and so \(\varphi \) is onto. Finally, if \(\varphi(ax^2 + bx + c) = (0, 0, 0) \), then it follows that \(a = b = c = 0 \), and so as the kernel of \(\varphi \) is trivial, this homomorphism is one-to-one as well. Thus, it is an isomorphism.

The generalization comes from taking any abelian groups \(G_0, \ldots, G_n \), and arranging them (symbolically) into a polynomial group as \(G = G_nx^n + \cdots + G_1x + G_0 = \{g_nx^n + \cdots + g_1x + g_0 | g_i \in G_i \} \), and that this group \(G \cong G_0 \oplus \cdots \oplus G_n \). Usually this is done in this setting where the \(G_i \) are all the same group, but sometimes not. ROCK ON!