Hello everyone. Please enjoy these selected solutions of HW 3.

1.5.1 Since \(S \) is countable, it is either countably infinite or finite. In the former case (\(S \) is countably infinite), by definition, \(S \sim \mathbb{N} \), and thus, there is a bijection (hence surjection) from \(\mathbb{N} \) to \(S \). In the latter case (\(S \) is finite), then we can express \(S = \{ s_1, \ldots, s_k \} \). Define the function \(f : \mathbb{N} \rightarrow S \) by the following rules:

\[
f(1) = s_1, \ldots, f(k) = s_k, \text{ and } f(x) = s_k \text{ for } x \geq k + 1.
\]

This is a surjection from \(\mathbb{N} \) to \(S \).

1.5.3 The following function is a bijection from \((0, 1]\) to \((0, 1)\):

\[
f(x) = \begin{cases}
\frac{1}{n+1} & \text{if } x = \frac{1}{n} \text{ for } n \in \mathbb{N} \\
\frac{x}{n} & \text{otherwise}.
\end{cases}
\]

1.5.8 We express \(S \times T \) as the countable union of countable sets. First, for \(x \in S \), recall the set

\[
T_x = \{ (x, t) | t \in T \}.
\]

The bijection \(t \mapsto (x, t) \) shows that \(T \sim T_x \), and so since \(T \) is countable, so it \(T_x \). We also showed in an earlier homework problem that \(S \times T = \bigcup_{x \in S} T_x \). Here, the indexing set \(S \) is countable, and so \(S \times T \) is the countable union of countable sets, which by one of our theorems, is countable.

1.5.9 Suppose the irrational numbers were countable. We know that \(\mathbb{Q} \) is countable and \(\mathbb{R} \) is uncountable. And, of course, that \(\mathbb{R} = \mathbb{Q} \cup \) the irrationals. This is a problem if the irrationals are countable: we would find that \(\mathbb{R} \) is the union of two countable sets, which is the countable union of countable sets, which would have to be countable by a theorem of ours—a contradiction.

2.1.9 (a) Following the hint, replacing \(b = c - a \) we have

\[
|a + b| \leq |a| + |b| \iff |a + (c - a)| = |c| \leq |a| + |c - a|, \text{ so } |c| - |a| \leq |c - a|.
\]

(b) Following the hint, replacing \(\tilde{b} = a - c \) we have

\[
|c + \tilde{b}| \leq |c| + |\tilde{b}| \iff |c + (a - c)| = |a| \leq |c| + |a - c|, \text{ so } |a| - |c| \leq |a - c| = |c - a|.
\]

(c) This follows directly from the previous parts.