Hi everyone! Here are the solutions to the Math 110 Exam of Happiness B!!! Enjoy!

1. (a) \(f(-2) = \frac{(-2)^2 + 4}{2} = \frac{8}{2} = 4. \)

 (b) There are no \(y \)-intercepts, since 0 is not in the domain of the function.

 (c) The function is odd, since

 \[
 f(-x) = \frac{(-x)^2 + 4}{-x} = -\frac{x^2 + 4}{x} = -f(x).
 \]

2. (a) Shift the graph 3 units to the right.

 (b) Reflect the graph over the \(x \)-axis, and scale the graph away the \(x \)-axis by a factor of 3.

 (c) Scale horizontally towards the \(y \)-axis by a factor of 3, and then shift the graph down 6 units.

3. The midpoint between the points \(P \) and \(Q \) is

 \[
 \left(\frac{5 + (-1)}{2}, \frac{2 + (-6)}{2} \right) = (2, -2).
 \]

4. We complete the square on the \(x \)'s to see that

 \[
 x^2 + 4x = x^2 + 4x + 4 - 4 = (x + 2)^2 - 4.
 \]

 Completing the square with the \(y \)'s gives us

 \[
 y^2 - 12y = y^2 - 12y + 36 - 36 = (y - 6)^2 - 36.
 \]

 So finally we have

 \[
 9 = x^2 + 4x + y^2 - 12y = (x + 2)^2 - 4 + (y - 6)^2 - 36,
 \]

 So,

 \[
 49 = (x + 2)^2 + (y - 6)^2.
 \]

 Thus, the center of the circle is at \((-2, 6)\) and the radius is \(\sqrt{49} = 7 \).
5. This line has slope -6, and goes through $(5, 7)$, so the equation is
\[y - 7 = -6(x - 5). \]

6. This line has slope $-\frac{1}{7}$, and goes through $(2, -1)$, so the equation is
\[y + 1 = -\frac{1}{7}(x - 2). \]

7. (a) \((f - g)(1) = f(1) + g(1) = [(1) - (1)^2] - [(2(1) + 1) = -3.\)

(b) The rule would be
\[(f \cdot g)(x) = f(x)g(x) = (x - x^2)(2x + 1).\]

(c) The rule would be
\[(g \circ f)(x) = g(f(x)) = g(x - x^2) = 2(x - x^2) + 1.\]

8. (a) We notice that
\[-2x^2 - 16x = -2(x^2 + 8x) = -2(x^2 + 8x + 16 - 16) = -2[(x + 4)^2 - 16] = -2(x + 4)^2 + 32.\]
So \[-2x^2 - 16x - 30 = -2(x + 4)^2 + 32 - 30 = -2(x + 4)^2 + 2\]

(b) The vertex is at $(-4, 2)$, and the graph is pictured below.