Project Scheduling: PERT/CPM

Project Scheduling with Known Activity Times (as in exercises 1, 2, 3 and 5 in the handout) and considering Time-Cost Trade-Offs (as in exercises 4 and 6 in the handout)

This is Critical Path Method

Project Scheduling with Uncertain Activity Times (as in exercises 7, 8 and 9 in the handout).

This is Program Evaluation Research Technique

Acknowledgement: I have adapted the format and some ideas from the PowerPoint slides of Dr. C. Lightner of Fayetteville State University, but most of the mathematical solutions and methods I have used are quite different and extend his work.

Introduction to Project Management

Project Scheduling or project management is used to schedule, manage and control projects which can be analyzed into various semi-independent activities or tasks.

Example: Building a New Home
When building a new home, individual subcontractors are hired to:
- Grade and prepare the land
- Build the foundation
- Frame up the home
- Insulate the home
- Wire (Electricity, Cable, Telephone lines) the home
- Drywall
- Paint (inside)
- Put vinyl siding on home
- Install Carpet
- Landscape
- Lay Concrete

PERT/CPM

PERT
- Program Evaluation and Review Technique
- Developed by U.S. Navy for Polaris missile project
- Developed to handle uncertain activity times

CPM
- Critical Path Method
- Developed by Du Pont & Remington Rand
- Developed for industrial projects for which activity times are known

There are project management software packages that can perform both.

PERT and CPM have been used to plan, schedule, and control a wide variety of projects:
- R&D of new products and processes
- Construction of buildings and highways
- Maintenance of large and complex equipment
- Design and installation of management systems,
- Organizing transportation projects
- Deployment and/or relocation of forces
- Design of computer systems
PERT/CPM is used to plan the scheduling and optimal staffing of individual activities that make up a project. Projects may have as many as several thousand activities and may have to be broken up into simpler sub-projects. Usually some activities depend on the completion of other activities before they can be started. So we need to start with the Prerequisite Task Set, along with durations for each task, or activity.

Project managers rely on PERT/CPM to help them answer questions such as:
- What is the **total time** to complete the project?
- What are the **scheduled start and finish dates** for each specific activity?
- Which activities are **critical** and must be completed exactly as scheduled to keep the project on schedule?
- How long can **noncritical activities** be delayed before they cause an increase in the project completion time?
- If activity times are uncertain (i.e., they are random variables), what is the probability that the project will be finished in any given time-frame?
- If there is a cost associated with “crashing” each activity, what is the extra cost of completing the project at a time earlier than the normal time?

Project Network
- A **project network** can be constructed to model the precedence of the activities. It consists of nodes and arrows between the nodes.
- Each activity is represented by an **arrow**, which starts at a node and ends at a different node.
- The **nodes** of the network represent events comprising the completion of a subset of activities, so that subsequent activities can occur.
- The **start node** has only arrows issuing from it; the **finish node** has only arrows entering it. All other nodes have arrows both entering and leaving.
- **Immediate predecessor(s)** is (are) activities that must be completed immediately before a given activity can begin. The arrows entering a node represent the immediate predecessors of those exiting the node.
- The network is a representation of the precedence relationships of the activities.

The Critical Path and Activity Slack
- A **path** through a network is one of the routes following the arrows (arcs) from the **start node** to the **finish node**.
- The **length of a path** is the sum of the (estimated) durations of the activities on the path.
- The (estimated) project duration or project completion time equals the length of the longest path through the project network.
- This longest path is called the critical path. (If more than one path tie for the longest, they are all critical paths.)
- **Activity Slack** is the amount of time that noncritical activities can be delayed without increasing the project completion time.
- The critical path will always consist of activities with zero slack.
The Mohawk Discount Store is designing a management training program for individuals at its corporate headquarters. The company wants to design a program so that trainees can complete it as quickly as possible. Important precedence relationships must be maintained between assignments or activities in the program. For example, a trainee cannot serve as an assistant to the store manager until the employee has obtained experience in the credit department and at least one sales department. The following activities are the assignments that must be completed by each program trainee. Construct the project network for this problem. (Anderson, et. Al, Chapter 10, problem 1).

Activities A – H represent actual tasks.

Immediate Predecessor

<table>
<thead>
<tr>
<th>Activity</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>D</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Try this yourself before looking at the next slide!

Mohawk Project Network

Overall Procedure for solving a Project Network

1. Determine the sequence of activities.
2. Construct the network or precedence diagram. Make sure there are no “dangling” activities or loops: all activities lead towards the end of the project.
3. Starting from the left, compute the Early Start (ES) time at each node. This is the FORWARD PASS.
4. Starting from the right, compute the Late Finish (LF) time at each node. This is the BACKWARD PASS.
5. Find the slack(s) for each activity.
6. Identify the Critical Path.

In the following slides we will elaborate on steps 3-6.
Project Management Notation: Nodes

- **ET**: The earliest time all the activities entering a node can be said to be completed. This will be computed on a forward pass through the network, starting at the start node.
- **LT**: The latest time the node at the end of the activity can be completed and not delay the project. This will be computed on a backward pass through the network, starting at the finish node.
- **t_{ij}**: Duration of activity (i,j) (shorthand for the activity going from node i to node j).

Node i \[\rightarrow \] Activity (i,j) \[\rightarrow \] Node j

\[
\begin{align*}
\text{ET}_i & = \max(\text{ET}_j + t_{ij}) \\
\text{LT}_j & = \min(\text{LT}_i - t_{ij}, \text{LT}_j) \\
\text{duration} t_{ij} & = \text{LT}_j - \text{ET}_i
\end{align*}
\]

Example: Horizon Cable

Horizon is about to expand its cable TV offerings in Smalltown, adding the Cooking Network and others. The activities in the table below are needed to complete the service expansion.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Description</th>
<th>Immediate Predecessors</th>
<th>Duration (weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Choose stations</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>Get town council approval</td>
<td>A</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>Order converters</td>
<td>B</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>Install new dish to receive new stations</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>Install converters</td>
<td>C, D</td>
<td>10</td>
</tr>
<tr>
<td>F</td>
<td>Change billing system</td>
<td>B</td>
<td>4</td>
</tr>
</tbody>
</table>

Example: Horizon Cable

We put in the Start node on the left and see that activity A is the only one with no predecessors. This is the first arrow, leading to node 1. Then we see that the only activity with A as predecessor is B, so we attach an arrow representing B to Node 1, with Node 2 at its head.

Example: Horizon Cable

Now from the table of precedences, we see that activities C, D and F are those that have B as an immediate predecessor, so we attach an arrow for each with its base at node 2. Activities C and D both end in a single node # 3– to the right of node 2. This is because a single activity, E, depends on the completion of both of them together.

F has no ending node just yet; no activity has F as a predecessor, so it will go to the End node.
Example: Horizon Cable

Since no activities depend on E and F, both of these end in the Finish node and we are done drawing the precedence relationship as a network.

It's considered best to avoid having arrows crossing each other. While this is not exactly wrong, it is not particularly aesthetic, so we try to avoid such crossings.

Start

Activity Immediate Predecessors
A -
B -
C A
D B
E C, D
F B

Since no activities depend for their start on E and F, both of these end in the Finish node and we are done drawing the precedence relationship as a network.

It's considered best to avoid having arrows crossing each other. While this is not exactly wrong, it is not particularly aesthetic, so we try to avoid such crossings.

Step 3: Make a forward pass through the network as follows: For each node i beginning at the Start node (time 0), compute:

- **Earliest Node Time ET for any node is the maximum of the earliest finish times of all activities immediately preceding activity i:** an activity starts at its tail node’s time; i.e., once all of its predecessors have completed.
- **Earliest Finish Time EFT (Earliest Tail Node / Time):** ET is 0 for nodes with no predecessors, such as the Start node.

Note: The project completion time is the maximum of the Earliest Finish Times at the Finish node.

In the following, each node represents the completion of an activity. The Earliest time for the node is written on the lower right.

<table>
<thead>
<tr>
<th>Node #</th>
<th>ET = max(EFT + EST + duration) for all predecessors</th>
</tr>
</thead>
</table>

Earliest Times: Horizon Cable

So the total project time is 19 days.

Step 4: Make a backwards pass through the network, and at each node apply the

Latest Finish Time Rule: LT = (Minimum (LT-duration) of the immediate successor nodes as follows:

(The immediate successors for a node are all nodes that are at the head of an arrow issuing from the current node.)

Procedure for obtaining latest times for all activities:

- For the finish node, set LT equal to project completion time.
- For each activity issuing from a given prior node, calculate (LT of its finish node) – (duration of the current activity)
- Apply the latest finish time rule.
- Repeat until LFT and LST have been obtained for all activities.

Note: The minimum of ST for nodes directly subsequent to the Start Node should be 0!

Latest Node Times

So the total project time is 19 days.
Activity Times and Slack

Each activity has a start node and an end node. In the example below, there are different earliest times and latest times in each of nodes i and j relevant to the given activity (i,j):

<table>
<thead>
<tr>
<th>Start Node</th>
<th>Final Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>LST=latest Start node time</td>
<td>LFT=latest Final node time</td>
</tr>
<tr>
<td>EST=earliest Start node time</td>
<td>EFT=earliest Final node time</td>
</tr>
</tbody>
</table>

Definition of Slack:
The total slack in the activity is \(9-(2+4)=3 = \text{LFT} - (\text{EST}+d)\)
The free slack in the activity is \(7-(2+4)=1 = \text{EFT} - (\text{EST}+d)\)
The independent slack in the activity is \(7-(3+4)=0 = \text{EFT} - (\text{LST}+d)\)

Note that these are in decreasing order: this is always true, as LFT=EFT and LST=EST.

Meaning of the Different Slacks

Total Slack, or Float: The extra time that could be made available to an activity, assuming it has started at its earliest, without delaying the whole project time

\[\text{Total Slack} = \text{LFT} - (\text{EST}+d) \]

Free Slack, or Float: The extra time that could be made available to an activity, assuming it has started at its earliest, without preventing beginning at the earliest any subsequent activity (i.e., not just the final time as with total slack)

\[\text{Free Slack} = \text{EFT} - (\text{EST}+d) \]

Independent Slack: The extra time that could be made available to an activity, assuming it has started at its latest, without preventing beginning at the earliest any subsequent activity

\[\text{Independent Slack} = \text{EFT} - (\text{LST}+d) \]

Any path through the network (from Start to Finish) with all zero total slack activities is a critical path.
Effect of Various Slacks in Decision-Making

- If we use up the total slack, it may modify the critical path because of its influence on later activities. The coordinator of the whole project is therefore responsible for the total slack.
- Free slack does not influence subsequent activities, but it may not be completely available, unless prior activities are started at their earliest.
- Independent slack is a property of the activity alone: it does not require that any other activity be started at its earliest. So this is the internal slack available to the person(s) responsible for that activity alone.

Example: Horizon Cable

<table>
<thead>
<tr>
<th>Activity</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Slack</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Free Slack</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Independent Slack</td>
<td>Cr</td>
<td>Cr</td>
<td>Cr</td>
<td>1</td>
<td>0</td>
<td>9</td>
</tr>
</tbody>
</table>

CPM: Crashing a Project

- In the Critical Path Method (CPM) the following is assumed:
 - the normal time to complete an activity \((i,j)\) is \(D_{ij}\), and the normal cost of performing the activity in that time is \(c_{ij}\);
 - The activity can be "crashed" by finishing it at a reduced time. The minimum time for the activity is \(d_{ij}\); for that time the (increased) cost, is \(C_{ij}\);
 - The relationship between activity \((i,j)\)'s actual crash time, \(x_{ij}\), to its cost is assumed to be linear. We define the overall cost per unit time reduction, \(K_{ij}\), to be change in cost divided by change in time:
 \[
 K_{ij} = \frac{C_{ij} - c_{ij}}{D_{ij} - d_{ij}}
 \]
 - This gives us an equation for the cost \(y_{ij}\) for any crash time \(x_{ij}\):

CPM: Crashing a Project

The slope of this line is the negative (why?) of \(K_{ij}\) so the cost \(y_{ij}\) for time \(x_{ij}\) is given by the slope-intercept formula:

\[
 y_{ij} = -K_{ij}x_{ij} + L_{ij}
\]

where \(L_{ij}\) is the (as yet unknown) \(y\)-intercept of this line.
CPM: Crashing a Project

Thus the total cost is the sum of the costs of crashing along all activities:

\[\text{Cost} = \sum y_{ij} = -\sum K_{ij} x_{ij} + \sum L_{ij} \]

A final assumption is that:

1. The critical path does not change from that obtained by using the normal times, when some or all of the activities are crashed within their ranges.

So we want to minimize the total cost, i.e., we want to minimize\(-\sum K_{ij} x_{ij} + \sum L_{ij} \). But this is the same as maximizing its negative:

Maximize \(\sum K_{ij} x_{ij} - \sum L_{ij} \)

Finally, the sum of the y-intercepts, \(\sum L_{ij} \), is a constant which does not affect the optimization process, so we can ignore this piece for now and all we actually need to do is to

\[\text{Maximize } Z = \sum K_{ij} x_{ij} \]

This looks like it is becoming an LP problem and indeed it is: the constraints on this maximization are straightforward:

Along the critical path, we need to ensure that no activity starts before any prior activity has finished. So we introduce (variable) node times \(t_i \) for each node \#i on the critical path. Then it is clear that node \(j \) cannot happen until at least activity \((i,j) \) is done:

\[t_j \geq t_i + x_{ij} \quad \text{or} \quad t_i \leq t_j - x_{ij} \]

(where by \(\leq \) we mean "less than or equal to" etc.) Also, each of the \(t_i \) is non-negative, and we need to ensure that the project is completed by the pre-determined (crashed) project time.

The CPM Linear Programming Problem

Variables: Activity times \(x_{ij} \), Node completion times \(t_i \) (including final node \(t_{\text{Final}} \))

Maximize \(Z = \sum K_{ij} x_{ij} \)

Subject to:

\[t_i \leq t_j - x_{ij} \quad \text{for all critical activities } (i,j), \text{ and} \]

\[t_i \leq t_{\text{Final}} \quad \text{Desired Project Time} \]

\[x_{ij} \geq d_{ij} \quad \text{the minimum time allowed for activity } (i,j) \]

\[x_{ij} \leq D_{ij} \quad \text{the maximum time allowed for activity } (i,j) \]

Example: Auditing a Corporation

When auditing a corporation, the first phase of the audit involves obtaining "knowledge of the business". This requires the activities in below. Draw the activity network, determine the critical path, and find the total float and free float for each activity.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Immediate Predecessors</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Determining terms of engagement</td>
<td>Appraisal of auditability risk</td>
<td>Identification of types of transactions and controls</td>
<td>Systems description</td>
<td>Verification of systems description</td>
<td>Evaluation of internal controls</td>
<td>Design of audit approach</td>
</tr>
<tr>
<td>Auditor</td>
<td>-</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>D</td>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td>Duration (days)</td>
<td>5</td>
<td>6</td>
<td>14</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

CPM Theory Continued

Maximize \(Z = \sum K_{ij} x_{ij} \)

This looks like it is becoming an LP problem and indeed it is: the constraints on this maximization are straightforward:

Along the critical path, we need to ensure that no activity starts before any prior activity has finished. So we introduce (variable) node times \(t_i \) for each node \#i on the critical path. Then it is clear that node \(j \) cannot happen until at least activity \((i,j) \) is done:

\[t_j \geq t_i + x_{ij} \quad \text{or} \quad t_i \leq t_j - x_{ij} \]

(where by \(\leq \) we mean "less than or equal to" etc.) Also, each of the \(t_i \) is non-negative, and we need to ensure that the project is completed by the pre-determined (crashed) project time.
Example for CPM: The Audit

The network is:

Critical Path: ACDEFG. Nonzero slack only for B: all three slacks are 20.

Now let's see what happens when we have to crash the project:

Assume the auditing project must be completed in 30 days. The maximum allowable reduction in duration, as well as the cost per day of such a reduction, is appended to the table describing the audit. Formulate an LP that can be used to minimize the cost of meeting the projected deadline.

We have added an extra row as explained on the next slide.

Example: Crashing the Audit

Using MAPLE, the solution is: in order to complete the project in 30 days, run each activity according to the red numbers:

With $Z = 2,270$.

We have also entered in blue the completion times for each node.

Finish, 46
Calculating the Increased Cost

The quantity to be minimized is the total cost, which is given by the formula on slide 29:
\[\Sigma K_{ij} x_{ij} + \Sigma L_{ij} = \Sigma L_{ij} - Z. \] Thus, if we can compute \(\Sigma L_{ij} \) for all activities in the network, we will be able to find the minimum total cost.

For the line on slide 30, we know that the equation of the cost-duration line is
\[y_{ij} = -K_{ij} x_{ij} + L_{ij}, \]
and we know that the normal time-and-cost point \((D_{ij}, c_{ij})\) is on this line. Plugging that in and solving for \(L_{ij} \) we see that:
\[L_{ij} = c_{ij} + K_{ij} D_{ij}. \]
Thus the total cost is
\[\Sigma (c_{ij} + K_{ij} D_{ij}) - Z. \]

What does this mean?

Formula for Total Increased Cost; Meaning of Z

- Total cost \(= \Sigma (c_{ij} + K_{ij} D_{ij}) - Z = \Sigma c_{ij} + \Sigma K_{ij} D_{ij} - Z \)
- Normal-Time Cost + (Cost/unit reduction)(X)(Normal Time) - Z
- Normal-Time Cost + Virtual Cost of reducing all times to zero - Z

Thus the total increased cost is \(\Sigma K_{ij} D_{ij} - Z \), meaning the
Virtual Cost of reducing all times to zero - Z
So Z turns out to be the correction we have to apply because some or all of the actual computed times are bigger than zero.

Another way to do this is to calculate each actual reduction in time, and multiply by the corresponding cost-per-unit reduction, and then add.

Example for CPM: The Audit – Solution of the LP

For this example, we had found \(Z = \$3,390 \). To the table of normal times, introduce a new row for the product (Cost/unit reduction)(X)(Normal Time) and add along that row.

<table>
<thead>
<tr>
<th>Normal Duration (days)</th>
<th>3</th>
<th>6</th>
<th>14</th>
<th>8</th>
<th>4</th>
<th>4</th>
<th>4</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost per day of reducing duration, (K_{ij})</td>
<td>$100</td>
<td>$80</td>
<td>$60</td>
<td>$70</td>
<td>$30</td>
<td>$30</td>
<td>$30</td>
<td>$30</td>
</tr>
<tr>
<td>Maximum allowable reduction in duration</td>
<td>(\text{Row 1} \times \text{Row 2})</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Minimum time, (c_{ij})</td>
<td>3</td>
<td>2</td>
<td>9</td>
<td>6</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

So the first term is the sum along this last row: \$2,910. This is what it would have cost had we crashed every activity to zero (of course, this is disallowed by the minimum time requirements). Subtracting \$2,270, we get that the Total minimal increased cost for the audit is \$640.

Program Evaluation Research Technique

In practice, activity times are somewhat random.
A good estimate for the distribution of an activity time can be made on the basis of past experience.
In some instances there is no past experience but a best guess at the distribution of activity times can still be made.
It turns out that, in general, the randomness of activity times is well approximated by the so-called “beta” distribution. This is a distribution that is completely determined by three parameters: the shortest, or optimistic time \(a \), the longest, or pessimistic time \(b \) and the mode, or most likely time \(m \).
In the following we will show how knowing these three numbers for each activity will allow an estimate of the likelihood of meeting a specific completion date.
This is therefore also called the “three estimate approach.”
Here is a typical Beta distribution, with $a = 1$, $b = 7$ and m approximately 3. (Why is the shape of the beta distribution (i.e., skewed to the right) seem to be a reasonable one for activity times?)

Fact: For any beta distribution with parameters a, m and b, the mean is:

$$t = \frac{(a + 4m + b)}{6}$$

And the variance (i.e., square of the standard deviation) is

$$V = \frac{(b-a)}{36}$$

Sums of Independent Random Variables

Here’s another fact from probability theory:

Sums of Independent Random Variables

If $X_1, X_2, ..., X_n$ are independent random variables with means $\mu_1, \mu_2, ..., \mu_n$ and variances $V_1, V_2, ..., V_n$ respectively, then for the sum random variable

$$X = X_1 + X_2 + ... + X_n$$

the mean is $\mu_1 + \mu_2 + ... + \mu_n$ and the variance is $V_1 + V_2 + ... + V_n$.

Given independence, the means and variances add

Note: The standard deviations do not add to give the total standard deviation! We have to first add their squares (i.e., the variances), and then take the square root, to find the “total” standard deviation.

So: The total project time is a random variable, that has a mean and a variance that are both sums of the same along the critical path.

Central Limit Theorem

Here’s another fact from probability theory:

Central Limit Theorem

The sum of a (sufficiently large) number of independent random variables is approximately normally distributed

- We are assuming that the critical path does not change in the range (a to b) of activity times given by the parameters for the set of activities
- We find the critical path by using the modal times m for the activities.
- Thus the project completion time random variable will therefore have a normal distribution with mean equal to the sum of the means along the critical path and variance equal to the sum of the variances along the critical path.

PERT Method

1. Draw the activity network, as in CPM
2. Work out the critical path, using the modal times m for each activity, as in CPM
3. Find and then add the means only along the critical path, using the formula
 $$\mu = \sum(a + 4m + b)/6$$
4. Find and then add the Variances only along the critical path, using the formula
 $$V = \sum(b-a)/36$$
5. Find $\sigma = \text{the square root of} \ V$
6. The total time X along the critical path is now a normally distributed random variable with mean μ (the expected project time) and standard deviation σ.
7. Find the probability that the random total project time variable X is less than, or equal to, any given specified completion time T, i.e., $P(X \leq T)$ by converting to Z-scores and using the standard normal distribution tables.
The above is the full network with times computed using the m’s from the table given in the problem, giving a total time of 37. Here it is clear that the critical path is 1-3-4-7-9 and that the floats (slacks) are:

<table>
<thead>
<tr>
<th>Activity</th>
<th>(1,3)</th>
<th>(1,4)</th>
<th>(3,4)</th>
<th>(3,5)</th>
<th>(3,6)</th>
<th>(4,7)</th>
<th>(6,8)</th>
<th>(7,9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Float</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>6</td>
<td>9</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Free Float</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Indep Float</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sum</td>
<td>6</td>
<td>9</td>
<td>8.83</td>
<td>15</td>
<td>38.83</td>
<td>2.78</td>
<td>6.14</td>
<td></td>
</tr>
</tbody>
</table>

Notice that the mean along the critical path is slightly greater than the length computed using the m’s. This is reasonable for a distribution that is skewed to the right.

Thus the project time is $N(38.83, 2.48)$ (the standard deviation is the square root of the variance of 6.14).

We next compute the means and variances of each of the activities along the critical path 1-3-4-7-9:

<table>
<thead>
<tr>
<th>Activity</th>
<th>(1,3)</th>
<th>(1,4)</th>
<th>(3,4)</th>
<th>(3,5)</th>
<th>(3,6)</th>
<th>(4,7)</th>
<th>(6,8)</th>
<th>(7,9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>6</td>
<td>9</td>
<td>8.83</td>
<td>15</td>
<td>38.83</td>
<td>1.36</td>
<td>2.78</td>
<td>6.14</td>
</tr>
</tbody>
</table>

Notice that the mean along the critical path is slightly greater than the length computed using the m’s. This is reasonable for a distribution that is skewed to the right.

Thus the project time is $N(38.83, 2.48)$ (the standard deviation is the square root of the variance of 6.14).

Thus the probability that this normal random variable is less than or equal to 40 is given by the probability that a standard normal random variable is less than or equal to

$$Z = \frac{40 - 38.83}{2.48} = 0.47$$

From the tables, this is 0.6808:

Answer: The probability that the project will be completed in 40 days is 68%.
Example: ABC Associates

Consider the following project:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Immediate</th>
<th>Optimistic</th>
<th>Most Likely</th>
<th>Pessimistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>--</td>
<td>4</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>4.5</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0.5</td>
<td>1</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>B,C</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>G</td>
<td>B,C</td>
<td>1</td>
<td>1.5</td>
<td>5</td>
</tr>
<tr>
<td>H</td>
<td>E,F</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>I</td>
<td>E,F</td>
<td>2</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>J</td>
<td>D,H</td>
<td>2.5</td>
<td>2.75</td>
<td>4.5</td>
</tr>
<tr>
<td>K</td>
<td>G,I</td>
<td>3</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

Example: ABC Associates

- What is the earliest completion date?
- What is the critical path?
- If management has set a completion deadline for 24 hours, what is the probability that they will meet this deadline?

Example: ABC Associates

- What is the earliest completion date?
- What is the critical path?
- If management has set a completion deadline for 24 hours, what is the probability that they will meet this deadline?

ABC Associates Project Network

Example: ABC Associates

Activity Expected Times and Variances

<table>
<thead>
<tr>
<th>Activity</th>
<th>Expected Time</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6</td>
<td>2/9</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>4/9</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>1/9</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>1/36</td>
</tr>
<tr>
<td>F</td>
<td>4</td>
<td>1/9</td>
</tr>
<tr>
<td>G</td>
<td>2</td>
<td>4/9</td>
</tr>
<tr>
<td>H</td>
<td>6</td>
<td>1/9</td>
</tr>
<tr>
<td>I</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>J</td>
<td>3</td>
<td>1/9</td>
</tr>
<tr>
<td>K</td>
<td>5</td>
<td>4/9</td>
</tr>
</tbody>
</table>
Complete a forward and backward pass to fill in the above network.

Earliest/Latest Times and Slack

<table>
<thead>
<tr>
<th>Activity</th>
<th>ES</th>
<th>EF</th>
<th>LS</th>
<th>LF</th>
<th>Slack</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>0 *</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>C</td>
<td>6</td>
<td>9</td>
<td>6</td>
<td>9</td>
<td>0 *</td>
</tr>
<tr>
<td>D</td>
<td>6</td>
<td>11</td>
<td>15</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>E</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>F</td>
<td>9</td>
<td>13</td>
<td>9</td>
<td>13</td>
<td>0 *</td>
</tr>
<tr>
<td>G</td>
<td>9</td>
<td>11</td>
<td>16</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>H</td>
<td>13</td>
<td>19</td>
<td>14</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>I</td>
<td>13</td>
<td>18</td>
<td>13</td>
<td>18</td>
<td>0 *</td>
</tr>
<tr>
<td>J</td>
<td>19</td>
<td>22</td>
<td>20</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>K</td>
<td>18</td>
<td>23</td>
<td>18</td>
<td>23</td>
<td>0 *</td>
</tr>
</tbody>
</table>

Determining the Critical Path

- The critical path is a path of activities, from the Start node to the Finish node, with 0 slack times.
- Critical Path: A → C → F → I → K
- The project completion time equals the sum of the duration times of all activities along the critical path.
- Project Completion Time: 23 hours
Example: ABC Associates

Probability the project will be completed within 24 hrs: \(P(X < 24) \)
The mean completion time \(E(T) \) = the sum of the duration times of all activities
along the critical path. Thus \(E(T) = 23 \).

\[
\sigma^2 = \sigma^2_A + \sigma^2_C + \sigma^2_F + \sigma^2_K
\]

\[
= 4.9 + 0 + 1.9 + 1 + 4.9
\]

\[
= 2
\]

\[
\sigma = 1.414
\]

From the Standard Normal Distribution table:

\[
P(z < 0.71) = 0.5 + 0.2612 = 0.7612
\]

Thus there is a 76.12% chance that the project will meet its deadline.